PCB 導線(xiàn)分裂技術(shù)在平面EMI 濾波器中的應用

1. 引言1

  電磁干擾(EMC)正日益成為困擾開(kāi)關(guān)電源發(fā)展的嚴重問(wèn)題,并嚴重影響電網(wǎng)及鄰近設備的正常運行[1]。采用EMI 濾波器是抑制傳導電磁干擾的有效方法。典型EMI 濾波器工作原理如圖1——VAC 通常代表電網(wǎng)或前級電氣設備,LISN 為EMI 測試采用的線(xiàn)路阻抗穩定網(wǎng)絡(luò ),EUT 為待測設備,在電力電子領(lǐng)域內其通常為開(kāi)關(guān)電源。

  圖1 EMI 濾波器工作示意

  EMI 濾波器一般采用無(wú)源結構,以電感、電容為基本組成單元。由于傳統的EMI 濾波器的電感和電容采用分立元件,占據了電力電子設備的較大體積,已不符合開(kāi)關(guān)電源小型化、集成化的發(fā)展趨勢。如何壓縮體積,并更加有效阻斷EMI 路徑,成為發(fā)展新型EMI 濾波器的重要方向之一。目前,較具有代表性的發(fā)展方向是由CPES 較早提出的磁集成方法[2]。此方法在不改變傳統EMI 濾波拓撲的基礎上,在高介電常數陶瓷板上直接覆銅,構成LC 集成單元,并按照傳統EMI 濾波器設計方法,分別利用LC 集成單元構成共模濾波和差模濾波結構,進(jìn)而組成完整的EMI 濾波器。本課題組經(jīng)過(guò)進(jìn)一步研究,提出環(huán)形LC 集成單元,并組成完整的平面EMI 濾波器(圖2)。

  平面EMI 濾波器的特點(diǎn)是采用平面集成LC 結構(圖3)代替傳統的分立式電感和電容,組成EMI 濾波器的經(jīng)典結構。

  由于EMI 濾波器串聯(lián)于電網(wǎng)與開(kāi)關(guān)電源之間,故其載流能力必須符合開(kāi)關(guān)電源設計要求。受制于現有的陶瓷板覆銅技術(shù),對于矩形銅導線(xiàn)的厚度有較大的限制,當通過(guò)較大的電流時(shí),銅導線(xiàn)寬度必然增大,影響平面EMI 濾波器的電磁特性。文獻[3,4]提出采用交錯繞組結構以減小共模繞組的等效并聯(lián)電容。但這種方法應用于平面濾波器結構時(shí)會(huì )影響共模電容值,且對耦合系數要求過(guò)高。本文基于現有的平面LC 集成結構電磁模型,分析集膚效應對于EMI 濾波器寄生參數的影響,并采用有限元法計算采用分股并聯(lián)PCB 導線(xiàn)結構后,LC 單元寄生電容和寄生電阻的參數變化。

  2.集成LC 單元寄生參數對結構設計的影響

  2.1 集成LC 單元寄生參數設計

  經(jīng)典的EMI 濾波器設計中,EMI 干擾分為共模干擾與差模干擾,兩種干擾產(chǎn)生的主要原因不同,濾波器基本結構也不相同[5],圖3 為平面EMI 共模干擾濾波器的等效電路圖。

  其中,RLISN 為L(cháng)ISN 等效標準電阻,RLISN=25Ω;LCM、CY 為等效共模電感、共模電容;CEPC、RESR 分別為共模電感的寄生等效電容值與等效串聯(lián)電阻值。根據等效電路,圖4 在EMI 測量頻段內,其共模電感的阻抗越大,RLISN 兩端電壓越小,即EMI 干擾的測試值越小,共模電感的阻抗值為:

  式(1)表明,當頻率小于自諧振頻率( 0 1 c EPC ω = L C )時(shí),阻抗呈感性,當頻率大于諧振頻率時(shí),阻抗呈容性。同時(shí),在自諧振頻率前,等效串聯(lián)電阻越大,阻抗(ZLCM)越大。圖5 為考慮共模電感寄生參數的共模濾波器插入損耗特性。

  比較曲線(xiàn)l0 與曲線(xiàn)lR1、lR2,可以看出在共模濾波器其它參數不變的條件下,增大等效串聯(lián)電阻,可以提高諧振頻率點(diǎn)處的插入損耗,并進(jìn)一步提高其它頻率點(diǎn)處的插入損耗。比較曲線(xiàn)l0 與曲線(xiàn)lC1、lC2 發(fā)現,減小等效并聯(lián)電容,可以將共模電感的自諧振頻率點(diǎn)增大,從而改變共模濾波器插入損耗曲線(xiàn)的諧振頻率點(diǎn),提升其濾波性能。在設計平面集成LC 單元時(shí),需盡量減小共模電感的等效并聯(lián)電容(EPC),并增強集膚效應,從而加大

  其高頻交流等效串聯(lián)電阻(ESR)。

  2.2 共模模塊PCB 導線(xiàn)交流等效串聯(lián)電阻分析

  集成LC 單元采用矩形導線(xiàn)(圖6),為增大等效串

  聯(lián)電阻,我們可以利用集膚效應與鄰近效應,提高集

  成共模電感在高頻段的交流電阻。

  圖6 矩形截面導線(xiàn)模型

  其中,R— 導線(xiàn)軸心距;

  W— 銅導線(xiàn)的寬度;

  H— 銅導線(xiàn)的厚度。

  根據傳統的經(jīng)驗公式,矩形PCB 導線(xiàn)的等效串聯(lián)

  電阻交、直流電阻比為[6]:

  由式(2)可以看出,導線(xiàn)的等效串聯(lián)電阻的交直流電阻比(Kac)與導體寬度與厚度比相關(guān),相同的導線(xiàn)截面積,設計不同的導線(xiàn)寬度時(shí)其高頻段等效串聯(lián)電阻會(huì )有較大變化。采用經(jīng)驗公式簡(jiǎn)單快捷,但此經(jīng)驗公式不夠精確,故本文采用有限元法計算等效串聯(lián)電阻的交直流電阻比。

  2.3 共模模塊PCB 導線(xiàn)等效并聯(lián)電容分析

  EMI 濾波器的載流能力受制于開(kāi)關(guān)電源功率等級,當其流過(guò)較大電流時(shí),PCB 導線(xiàn)截面積必然增加,此時(shí)導線(xiàn)截面寬度與厚度有兩種設計(圖7)。

  為比較兩種導線(xiàn)設計趨勢的優(yōu)缺點(diǎn),建立平面LC單元等效并聯(lián)電容模型[7](圖8)。

  圖8 表明,等效并聯(lián)電容分為兩部分,分別為上表面區域構成的電容Cgu 和下表區域構成的電容Cgb。由于陶瓷板介電常數遠遠大于周?chē)諝獾慕殡姵,故可以認為幾乎所有的通量被限制在高介電常數的陶瓷基板內,導線(xiàn)邊緣產(chǎn)生的電容可以忽略不計,等效并聯(lián)電容主要有Cgb 決定。此時(shí)將Cgb 看成為一個(gè)“電容器”。為減小等效并聯(lián)電容(EPC),在導體間距不變的情況下,需增大導線(xiàn)下表面的表面積。故“窄而厚”的設計更加符合集成LC 單元的要求。

  2.4 分股導線(xiàn)結構在集成濾波器中應用

  由于高介電常數的陶瓷板上覆銅厚度有較大的限制,單股結構的LC 單元導線(xiàn)寬度不易減小。為盡量減小PCB 導線(xiàn)寬度以減小共模電感的等效并聯(lián)電容,可以借鑒常見(jiàn)的平面電感設計原理,采用分股并聯(lián)的LC 單元結構(圖9)。

  新型結構是將陶瓷基板結構的LC 單元與PCB 基板結構的平面電感緊密壓制,從而將單股矩形導線(xiàn)分成多股寬度較小的導線(xiàn),并使各股銅導線(xiàn)通過(guò)PCB 基板上的通孔并聯(lián)。這種結構合理的利用了成熟的PCB基板技術(shù),在保證PCB 板厚度足夠小的情況下,有效縮小了單板表面積與整體體積,同時(shí)利用PCB 技術(shù)解決陶瓷基板焊接不易的問(wèn)題,圖10 為導線(xiàn)并聯(lián)結構LC 單元模型。

  3. 單股導線(xiàn)結構寄生參數計算

  比較不同寬度下兩匝間等效并聯(lián)電容(EPC)與等效串聯(lián)電阻的交直流比(圖11、12)。計算結果表明,導線(xiàn)截面積一定時(shí),平面LC 單元的等效并聯(lián)電容與導線(xiàn)寬度(W)呈線(xiàn)性關(guān)系。PCB 導線(xiàn)寬度越小,其等效并聯(lián)電容越小。PCB 導線(xiàn)寬度越小,其交直流電阻比(Kac)越大,高頻時(shí)共模電感的等效串聯(lián)電阻越大。

  4. 分股并聯(lián)導線(xiàn)結構寄生參數計算

  采用分股并聯(lián)導線(xiàn)結構代替單股矩形導線(xiàn)結構,以三股為例,建立新的有限元計算模型[8],計算LC 單元的寄生參數(圖13~圖15)。

  采用新結構后,導體寬度成倍減小,進(jìn)而等效并聯(lián)電容明顯減小。同時(shí),雖然分裂導線(xiàn)減弱矩形導線(xiàn)的集膚效應,同等寬度下交流電阻有所減小。但對比于同等厚度矩形導線(xiàn)單股導線(xiàn)結構,新結構的導線(xiàn)集膚效應得到加強。

  5.實(shí)驗驗證

  為驗證采用分股導線(xiàn)結構后,其等效并聯(lián)電容的變化趨勢,采用PCB 基板制作兩種寬度LC 單元系列。LC 單元系列1 以2.5mm 寬度導線(xiàn)構成單股結構LC 單元,并制作其相應的雙股并聯(lián)結構和三股并聯(lián)結構;LC 單元系列2 以1.5mm 寬度導線(xiàn)構成單股結構LC 單元,同樣制作其相應的雙股并聯(lián)結構和三股并聯(lián)結構。其中系列1 的導線(xiàn)間距(G)為0.75mm,系列2的導線(xiàn)間距為1.5mm,電容測試采用Agilent 4395A 阻抗分析模塊。

  比較上表中各數據,可以看出對于任意參數的LC單元,采用分股并聯(lián)結構后,其等效并聯(lián)電容都會(huì )有一定的減小,且分裂股數越多,其等效并聯(lián)電容越小。

  6. 結論

  以環(huán)形“感容”集成結構為基本組成單元(LC 單元),論證了集成電感等效并聯(lián)電容(EPC)及等效串聯(lián)電阻在高頻段與PCB 導線(xiàn)截面寬度的關(guān)系,并在現有技術(shù)前提下提出一種改進(jìn)方法,得到如下結論:

  (1) 降低電感等效并聯(lián)電容或是提高其等效串聯(lián)等效電阻,都可以提高EMI 濾波器高頻段的濾波性能。

  (2) 在矩形導線(xiàn)截面積一定的條件下,減小導線(xiàn)寬度、增加厚度可以減小等效并聯(lián)電容,增強集膚效應、增大交流電阻。

  (3) 采用分股并聯(lián)結構后,其等效并聯(lián)電容基本不變,并可以獲得較大的交流電阻。

 


【上一個(gè)】 開(kāi)關(guān)電源功能規格測試項目 【下一個(gè)】 電源插座


 ^ PCB 導線(xiàn)分裂技術(shù)在平面EMI 濾波器中的應用

亚洲一级免费在线免费视频_无码精品人妻内射_无码潮喷中文字幕在线_激情五月开心五月中文字