數字化開(kāi)關(guān)電源設計
摘要:一種以數字芯片68HC08微控制器為核心的數字化開(kāi)關(guān)電源,將開(kāi)關(guān)電源的高效與數字芯片的智能控制相結合,并運用適當算法對電壓、電流進(jìn)行調整以及整個(gè)電路的保護。實(shí)驗結果驗證該電源供給用具有較高的輸出精度。
關(guān)鍵詞:68HC08微控制器;數字化開(kāi)關(guān)電源;智能控制
0 引言
與線(xiàn)性電源相比,開(kāi)關(guān)電源具有諸多優(yōu)點(diǎn):由于主功率晶體管工作在開(kāi)關(guān)狀態(tài),其損耗小,整機效率大大進(jìn)步;采用鐵氧體高頻變壓器,使電源的體積和重量大為減少,本錢(qián)更低等。一些專(zhuān)用電源芯片如TL494、UC3842的出現,也使開(kāi)關(guān)電源的設計更為簡(jiǎn)單,同時(shí)性能可靠。但只使用專(zhuān)用芯片制作的開(kāi)關(guān)電源輸出通常為單一狀態(tài),若要改變輸出狀態(tài)要對硬件電路進(jìn)行修改。筆者設計實(shí)現了一種單片機控制的數字化開(kāi)關(guān)電源,有效的改善了上述題目。
1 數字化開(kāi)關(guān)電源的設計原理
筆者設計的數字化開(kāi)關(guān)電源額定功率12OW。系統以開(kāi)關(guān)電源作為基本電路,采用高性能單片機作為控制系統,在控制算法的支持下,通過(guò)對輸出電壓和電流進(jìn)行實(shí)時(shí)采樣,并與軟件給定值相比較,控制和調整開(kāi)關(guān)電源的工作狀態(tài),得到期看值。主要包括輸進(jìn)的整流濾波校正、功率變換、輔助電源部分、驅動(dòng)電路、單片機控制系統5部分。功率變換部分采用單端反激變換電路,輔助電源為驅動(dòng)電路提供電能,驅動(dòng)電路將來(lái)自單片機的PWM信號放大后驅動(dòng)主功率晶體管,單片機系統是整個(gè)電路的控制核心,通過(guò)采樣值的變化實(shí)時(shí)控制輸出PWM的占空比。整個(gè)設計力求做到了性能最優(yōu),本錢(qián)最低。其結構如圖1所示。
1.1主電路分析
功率轉換部分采用單端反激電路,結構如圖2。當加到原邊主功率開(kāi)關(guān)管Q1的激勵脈沖為高電平使Q1導通時(shí),直流輸進(jìn)電壓加在原邊繞組兩端,由于此時(shí)副邊繞組相位是上負下正,整流管D1反向偏置截止,原邊電感儲存能量;當激勵脈沖為低電平使Q1截止時(shí),原邊繞組兩端電壓極性反向,副邊繞組相位變?yōu)樯险仑?整流管正向偏置導通,變壓器儲存的能量向副邊開(kāi)釋。在此開(kāi)關(guān)過(guò)程中,高頻變壓器既起變壓隔離作用,又起電感儲能作用。
1.2單片機控制系統
單片機控制系統是整個(gè)數字化電源的核心部分。單片機采用Freescale公司的68HC908SR12,其內部資源豐富,集成了12k的程序存儲器,2路定時(shí)/計數器,14通道1o位A/D轉換器,PWM輸出,內部溫度傳感器等。單片機控制系統框圖如圖3。
ATD0、ATD10分別是電壓電流采樣引腳,將采到的模擬量轉化為數字量送至CPU。CPU每隔lms進(jìn)行一次控制調整,從而輸出占空比合適的PWM信號。PWM信號經(jīng)過(guò)驅動(dòng)電路隔離放大后直接控制主電路的開(kāi)關(guān)管。由于908SR12內自帶脈沖寬度調制模塊,PWM最大頻率達到125kHz,完全可以用在高頻開(kāi)關(guān)電源中,8位的分辨率,可以保證輸出電壓電流的精度。
鍵盤(pán)部分采用觸點(diǎn)式按鍵開(kāi)關(guān),使用者可以根據自己需要在額定功率下任意調整輸出電壓電流值。整個(gè)回路采用雙閉環(huán)的控制系統,正常情況下電壓環(huán)的反饋使輸出電壓恒定,一旦輸出電流超出最大值,電流環(huán)使輸出電壓降低,輸出電流維持在最大電流值。顯示部分可以由數碼管或液晶組成,本系統中通過(guò)按鍵選擇分別顯示電壓、電流、功率、溫度、電能計量等,并通過(guò)指示燈指示不同狀態(tài)。在運行過(guò)程中若出現開(kāi)路或短路現象,指示燈顯示報警狀態(tài),CPU會(huì )立即啟動(dòng)保護程序封閉主電路。同時(shí)不斷檢測電源內部溫度,防止整機溫升過(guò)高。
1.3驅動(dòng)電路設計
由于單片機輸出5V1vrL電平不足以驅動(dòng)主功率開(kāi)關(guān)管,并且在整個(gè)電路中原副邊完全電氣隔離,因此單片機輸出PWM信號不能直接與主功率開(kāi)關(guān)管相連。另外主功率開(kāi)關(guān)管的溫升直接影響到整套設備的穩定性與使用壽命。進(jìn)步開(kāi)關(guān)管的導通與關(guān)斷速度是解決開(kāi)關(guān)管溫升題目最本質(zhì)有效的方法。這就要求驅動(dòng)電路具有以下特點(diǎn):
。1)能夠提供足夠大的驅動(dòng)電流,即驅動(dòng)電路的充電電阻要充分小,以縮短導通時(shí)間;
。2)具有足夠的泄流能力,即放電電阻要充分小,以進(jìn)步其關(guān)斷速度;
。3)適當的驅動(dòng)電壓,驅動(dòng)電壓一般取12V比較合適?紤]到原副邊的電氣隔離,設計了以下驅動(dòng)電路,如圖4。
PWM為單片機輸出的占空比信號,經(jīng)過(guò)光耦與原邊相連,滿(mǎn)足了原副邊的電氣隔離要求。反相器U2實(shí)現了TTL電平到CMOS電平的轉換。PWM信號為高電平時(shí),U2輸出高電平,T1導通,T2關(guān)斷,驅動(dòng)電源對開(kāi)關(guān)管的柵源間電容充電,使之迅速達到開(kāi)關(guān)管的開(kāi)通閾值電壓,開(kāi)關(guān)管迅速導通;PWM信號為低電平時(shí),U2輸出低電平,T1關(guān)斷,T2導通,開(kāi)關(guān)管柵源間電容通過(guò)T2迅速將電量放出,實(shí)現了開(kāi)關(guān)管的迅速關(guān)斷。該驅動(dòng)電路結構簡(jiǎn)單,性能穩定且具有很高的驅動(dòng)速度,可取代價(jià)格較高的驅動(dòng)芯片。
2 系統軟件流程
系統流程圖如圖5:
為了改進(jìn)系統的動(dòng)態(tài)特性及穩定性,在數據處理程序中對PWM的占空比規定了上下限,以防連續采樣時(shí)出現較大偏差,對PWM進(jìn)行限幅處理。另外若出現意外情況,單片機會(huì )及時(shí)關(guān)斷PWM,以防輸出電壓或電流過(guò)大而損壞晶體管。
3 結束語(yǔ)
在采集大量數據分析后得到以下結論:該開(kāi)關(guān)電源工作在恒壓模式時(shí),輸出值與期看值誤差不超過(guò)30mV工作在恒流模式時(shí),輸出值與期看值不超過(guò)40mA;整機效率在85以上,主功率開(kāi)關(guān)管的溫升在40℃左右,高頻變壓器溫升低于60℃,完全適應于一般場(chǎng)合下的電能供給要求。
以單片機為核心的開(kāi)關(guān)電源,不僅有助于進(jìn)步開(kāi)關(guān)電源的精度,也使得開(kāi)關(guān)電源更加智能化。智能化也是今后電源發(fā)展的一個(gè)方向,因此本文設計的以單片機為核心的可編程電源供給用具有較高的使用價(jià)值。
【上一個(gè)】 基站開(kāi)關(guān)電源模塊休眠技術(shù)在節能降耗中的應用 | 【下一個(gè)】 用LM3488設計回掃開(kāi)關(guān)電源供給器 |